GATK MARKDUPLICATESSPARK
Spark implementation of Picard MarkDuplicates that allows the tool to be run in parallel on multiple cores on a local machine or multiple machines on a Spark cluster while still matching the output of the non-Spark Picard version of the tool. Since the tool requires holding all of the readnames in memory while it groups read information, machine configuration and starting sort-order impact tool performance.
URL: https://gatk.broadinstitute.org/hc/en-us/articles/9570319741083-MarkDuplicatesSpark
Example
This wrapper can be used in the following way:
rule mark_duplicates_spark:
input:
"mapped/{sample}.bam",
output:
bam="dedup/{sample}.bam",
metrics="dedup/{sample}.metrics.txt",
log:
"logs/dedup/{sample}.log",
params:
extra="--remove-sequencing-duplicates", # optional
java_opts="", # optional
#spark_runner="", # optional, local by default
#spark_v4.6.0-24-g250dd3e="", # optional
#spark_extra="", # optional
resources:
# Memory needs to be at least 471859200 for Spark, so 589824000 when
# accounting for default JVM overhead of 20%. We round round to 650M.
mem_mb=lambda wildcards, input: max([input.size_mb * 0.25, 650]),
threads: 8
wrapper:
"v4.6.0-24-g250dd3e/bio/gatk/markduplicatesspark"
Note that input, output and log file paths can be chosen freely.
When running with
snakemake --use-conda
the software dependencies will be automatically deployed into an isolated environment before execution.
Notes
The java_opts param allows for additional arguments to be passed to the java compiler, e.g. “-XX:ParallelGCThreads=10” (not for -XmX or -Djava.io.tmpdir, since they are handled automatically).
The extra param allows for additional program arguments.
The spark_runner param = “LOCAL”|”SPARK”|”GCS” allows to set the spark_runner. Set the parameter to “LOCAL” or don’t set it at all to run on local machine.
The spark_master param allows to set the URL of the Spark Master to submit the job. Set to “local[number_of_cores]” for local execution. Don’t set it at all for local execution with number of cores determined by snakemake.
The spark_extra param allows for additional spark arguments.
Software dependencies
gatk4=4.5.0.0
snakemake-wrapper-utils=0.6.2
Input/Output
Input:
bam file
reference file
Output:
bam file with marked or removed duplicates
Code
__author__ = "Fillipe G. Vieira"
__copyright__ = "Copyright 2021, Filipe G. Vieira"
__license__ = "MIT"
import tempfile
from snakemake.shell import shell
from snakemake_wrapper_utils.java import get_java_opts
extra = snakemake.params.get("extra", "")
spark_runner = snakemake.params.get("spark_runner", "LOCAL")
spark_master = snakemake.params.get(
"spark_master", "local[{}]".format(snakemake.threads)
)
spark_extra = snakemake.params.get("spark_extra", "")
java_opts = get_java_opts(snakemake)
metrics = snakemake.output.get("metrics", "")
if metrics:
metrics = f"--metrics-file {metrics}"
log = snakemake.log_fmt_shell(stdout=True, stderr=True)
with tempfile.TemporaryDirectory() as tmpdir:
shell(
"gatk --java-options '{java_opts}' MarkDuplicatesSpark"
" --input {snakemake.input}"
" {extra}"
" --tmp-dir {tmpdir}"
" --output {snakemake.output.bam}"
" {metrics}"
" -- --spark-runner {spark_runner} --spark-master {spark_master} {spark_extra}"
" {log}"
)